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FIG. 3. A correlation of the freeze-off conditions for a wide 
range of 5. 

factor coefficient, 0 < r < 3.6 x 104. The upper region of 
the predicted line shows a freeze-off regime and the lower, 
a steady-state ice-band. Taking into account that the 
morphology of the ice layer under which the experimental 
conditions are close to the onset of freeze-off is often affected by 
small disturbances in temperature and flow conditions, it can 
be said that equations (9) and (10) give good predictions for the 
effects of the friction-factor on the freeze-off conditions. 

CONCLUDING REMARKS 

The onset of freeze-off was examined for the case that the 
friction-factor coefficient, 5, in water-flow pipe systems was 
dominant. It has been ascertained both experimentally and 
analytically that the freeze-offeasily occurs for a larger value of 
5 and the effect of 5 on the freeze-off conditions can be given by 
equations (9) and (10). 
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1. INTRODUCTION 

LAMINAR, steady-state film condensation and boiling, along a 
plane surface submerged in a porous medium, have been 
studied analytically [l, 23 assuming that capillarity and non- 
Darcian effects are not significant. 

The results, based on these assumptions, give the Nusselt 
number, condensate flow rate, and film thickness as a function 
of the subcooling (or superheating) parameter. The Prandtl 
number, which is introduced through thecomparison between 
the thermal and momentum boundary-layer thickness, is not 
present because of the uniform film velocity distribution 
resulting from the application of Darcy’s law. The capillary 
pressure, which is proportional to cr(K/~)-“~ and depends on 
the saturation, can become significant at low permeabilities. 

As the permeability increases, the inertia and boundary 
effects become important and for very high permeabilities the 

results based on no rigid matrix present [3, 43 must hold. 
However, since the film thickness decreases with an increase in 
permeability, then for the boundary-layer treatment to be 
valid, the small length scale associated with the microstructure 
of the rigid matrix must be much smaller than the film 
thickness. If this condition is satisfied, then the non-Darcy 
regime can be examined and, also, the parameters indicative of 
transition to the Darcian regime can be determined. 

In this study the boundary layer and similarity treatment of 
film condensation in the absence of any solid matrix [3,4] are 
extended to include the first-order resistance resulting from 
the presence of a solid matrix. This is done by applying an 
expansion method [5] (up to a third order) which has pre- 
viously been used for treating natural convection in porous 
media [6]. The findings are then compared to those based on 
application of Darcy’s law [ 1,2]. 
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NOMENCLATURE 

C C&44w?) - ‘1”’ YX porous media shape parameter, (sxZK 1)112 

5 specific heat capacity [kJ kg-’ K-l] & porosity 
f streamfunction defined by equation (6) similarity variable, cyx- II4 
Gr, Grashof number, gApx3p; ‘vr2; also called ;I (T-T,)/(Tw-T,) 

Archimedes number, Ar, kinematic viscosity [m’ s- ‘1 
h fg heat of evaporation [kJ kg-‘] L expansion parameter, 
k, effective thermal conductivity [W rn-’ K-‘1 EXli2C-ZK-l = 2y:Gr;“Z 
K permeability Cm*] P density [kg mm31 
Nu, Nusselt number, qx(T,- T,)-‘k;’ AP pI--pv Ckgm-31 

temperature [K] 
:T T-T[K] 

! 

surface tension [N m _ ‘1 
streamfunction 

Pr PTand’tl number, a,v;’ condensate mass flow rate [kg rn-’ s-‘1 
u, 0 velocity components, along and perpendicular A nondimensional film thickness, c6x - l14. 

to the plate [m s- ‘1 

x9 Y coordinate axes, along and perpendicular to Subscripts 
the plate Cm]. 

; 
effective 
liquid 

Greek symbols S saturation 

a, effective thermal diffusivity [m* s- ‘1 W wall 
6 film thickness [m] V vapor. 

2. ANALYSIS perturbation parameter 

When no rigid matrix is present the condensate flow rate 
ana other quantities ofinterest depend on the Prandtl number, 
Pr, and the extent of subcooling, c,AT/h,,. For higher Prandtl 
numbers the convective term in the energy equation becomes 
insignificant; therefore, the results are independent of the 
Prandtl number, as are the results obtained based on Darcy’s 
law [l, 21. For a two-dimensional boundary-layer flow with a 
first-order resistance due to the presence of a rigid matrix, we 
have 

a”+!!!&), 
ax ay (1) 

Plug +w; = ~,~-K-lEp,u-g(P,-P.). (2) 

aT aT a2T 
ux+vay=aedy2. 

The boundary conditions are : 

T= T, at y=O 

T=T, at y=6 

T=T, at x=0 

u=u=o at y=O 

uy = 0 at y=6 

u=v=o at x = 0. 

The interfacial shear, which is significant for low Prandtl 
numbers [4], has been neglected. 

In addition, an overall energy balance yields 

In the following approximate solutions to equations (lH4) 
are found for cases where the flow field is not severely altered 
due to the presence of the solid matrix. This is done by making 
an expansion about the solution for the case where no rigid 
matrix is present. The method is similar to that used in [S] for 
inclusion of blowing or suction. 

Equations (2) and (3) are scaled using q = cyx- l/4 and a 

5, = c-~K-~&/~ = 2yfGr;“Z (5) 

where Gr, = g(p,-&x3 (p,v:)-’ is the Grashof or 
Archimedes number, and yz = EX’K-’ is the porous media 
shape parameter. Note that when K -+ co, then 5, = 0 and q 
becomes the only independent variable. The streamfunction 
can be defined as 

* = 4v,cx3’4J (6) 

where 

c4 = Gr,/4. (7) 

Based on these substitutions the velocity components are 

v=-4v,cx-“4 
( 

cv of 
;j---+iz , 

4 all > 

and equations (2) and (3) become 

f,,,+3$,,-2f,Z+2e;Cf,(-f_f,,)+f,f,,l = -1 
(24 

and 

(3a) 

where the subscripts indicate partial differentiation. 
Now, we assume the following expansion 

The differential equations emerging from these sub- 
stitutions are given in [6] wheref, and To are the available sol- 
utions for the case of no solid matrix present [3,4]. 

Based on the energy equation and after transformation and 
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differentiation of equation (4), we have 

In general, given Pr and cpAT/hfg (called the Kutateladze 
number, KU), the dimensionless film thickness, A, the local 
Nusselt number, Nu,, and the condensate flow rate, r/p, can 
be determined. The film thickness is implicitly obtained from 
equation (4a) and the local Nusselt number and the 
condensate flow rate are 

l- 

23’%r:‘4& 
= : 5:fi(A) 

i=0 

The standard numerical technique used in the integration of 
the initial value problems was applied to the equations 
emerging from the expansion (these equations are given in ref. 
[6] except for the driving force which is a constant equal to 
unity and is present only for the zeroth-order equation) and 
the desired derivatives were determined for i up to 3. Some 
examples of the results are given in Table 1. Complete 
agreement has been found for i = 0 by comparison with results 
given in refs. [3,4]. Note that the interfacial shear stress was 
not included in this study. The range of <, for which equations 
(8) and (9) are applicable will be discussed in the next section. 

For Darcian flow, i.e. for large <,, we have [1] 

2l’*Nu 
2 = $ {Pr/[(, erf (A&“ZPr1’2)]}1’Z, 

Grj@ 
(10) 

& + k = l/{rr[erf (A~;1’2Pri’2)]2}, (11) 
P 

and 

I- 

23’2Gr:‘4p, 
= (;‘A. (12) 

3. RESULTS AND DISCUSSION 

The Prandtl number influences the film thickness through 
the convection term in the energy equation [equation (3a)], 
and for relatively low Prandtl numbers the temperature profile 
becomes nearly linear. On the other hand, the film thickness 
increases monotonically with cpAT/h, 

For a given Pr and c,AT/hr,, one is interested in (1) the effect 
of the resistance due to the presence of a solid matrix, and (2) 
the effect of the non-Darcian terms on the film thickness and 
other quantities. Here it is evident that: (a) as the resistance 
increases the average film velocity decreases and the film 
thickness increases as shown in refs. [l, 21, and (b) since 
Darcy’s law does not allow for no-slip at the wall, its 
application leads to a smaller film thickness than that for no- 
slip. Similarly, the absence of the inertia (development) term 
results in higher velocities. Therefore, for high permeabilities, 
when the non-Darcy effects become significant, equation (11) 
underpredicts the film thickness. 

Figure 1 shows the results for Pr = 0.03 and 10. The 
similarity solution from ref. [l], i.e. equation (1 l), as well as the 
solutions obtained here by the expansion method, are given. 
The results show that the extent of the non-Darcy regime 
increases with a decrease in c,@T/hfg. Table 2 gives some 
typical results for foams as the rigid matrix and mercury as the 
fluid. Consider the non-Darcy regime for a film thickness of l- 
3 mm and Pr = 0.03. If the small length scale is taken as 
(K!E)“~, then for K = lo-’ m* this is 0.3 mm. Since the film 
thickness is not much larger than the pore size, the results are 
not very meaningful. For l, > 100 the results based on 
Darcy’s law, i.e. equations (10)(12), hold. For water the film 
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FIG. 1. Comparison of the results obtained by the third-order expansion and those based on Darcy’s law, Pr = 0.03 and 10. 

Table 2. Film thickness for two different fluids and some foams 

Fluid Geometry Primary dimensionless variables Range of film Regime* 
thickness 

gAplp,v: cplh,, AT 6 

(m-j) (“c-1) (“C) (5) E (:) Gr, y; Pr, c$ Tlh,, 5, (mm) 

IO” 5x 1O-4 2-300 1O-6 0.9 0.1 10s lo4 0.03 0.001~.15 2 l-3 Non-Darcian 
(mercury) 10-s 106 2x10z 3-40 Darcian 

:!I’” 6 
10s 2x104 30-400 Darcian 

lOI 2x 10-3 2-100 1O’O lo4 10 0.0040.2 0.2 0.14.2 Non-Darcian 
(water) lo-* lo6 20 0.1-0.8 Non-Darcian 

lo-lo 10s 2 x 103 l-8 Darcian 

* Based on extrapolation, and also analogy with the results for natural convection. 

thickness is smaller but the non-Darcy effects persist even for to a vertical heated surface, Int. J. Heat Mass Transfer 22, 
lower permeabilities. 849-855 (1979). 

The results given in Figure 1 allow an approximation of the 
value of 5, above which the non-Darcian effects become 
significant, i.e. the limit of applicability of equations (lOH12). 
This transitional 5, depends on the Prandtl number and 
increases as Pr increases, which is similar to the results found 
for natural convection [6]). 
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